75 research outputs found

    Transformation Techniques for OCL Constraints

    Get PDF
    Constraints play a key role in the definition of conceptual schemas. In the UML, constraints are usually specified by means of invariants written in the OCL. However, due to the high expressiveness of the OCL, the designer has different syntactic alternatives to express each constraint. The techniques presented in this paper assist the designer during the definition of the constraints by means of generating equivalent alternatives for the initially defined ones. Moreover, in the context of the MDA, transformations between these different alternatives are required as part of the PIM-to-PIM, PIM-to-PSM or PIM-to-code transformations of the original conceptual schema

    Verifying UML/OCL operation contracts

    Get PDF
    In current model-driven development approaches, software models are the primary artifacts of the development process. Therefore, assessment of their correctness is a key issue to ensure the quality of the final application. Research on model consistency has focused mostly on the models' static aspects. Instead, this paper addresses the verification of their dynamic aspects, expressed as a set of operations defined by means of pre/postcondition contracts. This paper presents an automatic method based on Constraint Programming to verify UML models extended with OCL constraints and operation contracts. In our approach, both static and dynamic aspects are translated into a Constraint Satisfaction Problem. Then, compliance of the operations with respect to several correctness properties such as operation executability or determinism are formally verified

    A UML/OCL framework for the analysis of fraph transformation rules

    Get PDF
    In this paper we present an approach for the analysis of graph transformation rules based on an intermediate OCL representation. We translate different rule semantics into OCL, together with the properties of interest (like rule applicability, conflicts or independence). The intermediate representation serves three purposes: (i) it allows the seamless integration of graph transformation rules with the MOF and OCL standards, and enables taking the meta-model and its OCL constraints (i.e. well-formedness rules) into account when verifying the correctness of the rules; (ii) it permits the interoperability of graph transformation concepts with a number of standards-based model-driven development tools; and (iii) it makes available a plethora of OCL tools to actually perform the rule analysis. This approach is especially useful to analyse the operational semantics of Domain Specific Visual Languages. We have automated these ideas by providing designers with tools for the graphical specification and analysis of graph transformation rules, including a backannotation mechanism that presents the analysis results in terms of the original language notation

    Dealing with non-functional requirements in model-driven development

    Get PDF
    The impact of non-functional requirements (NFRs) over software systems has been widely documented. Consequently, cost-effective software production method shall provide means to integrate this type of requirements into the development process. In this vision paper we analyze this assumption over a particular type of software production paradigm: model-driven development (MDD). We report first the current state of MDD approaches with respect to NFRs and remark that, in general, NFRs are not addressed in MDD methods and processes, and we discuss the effects of this situation. Next, we outline a general framework that integrates NFRs into the core of the MDD process and provide a detailed comparison among all the MDD approaches considered. Last, we identify some research issues related to this framework.Preprin

    How do software architects consider non-functional requirements: an exploratory study

    Get PDF
    © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Dealing with non-functional requirements (NFRs) has posed a challenge onto software engineers for many years. Over the years, many methods and techniques have been proposed to improve their elicitation, documentation, and validation. Knowing more about the state of the practice on these topics may benefit both practitioners' and researchers' daily work. A few empirical studies have been conducted in the past, but none under the perspective of software architects, in spite of the great influence that NFRs have on daily architects' practices. This paper presents some of the findings of an empirical study based on 13 interviews with software architects. It addresses questions such as: who decides the NFRs, what types of NFRs matter to architects, how are NFRs documented, and how are NFRs validated. The results are contextualized with existing previous work.Peer ReviewedPostprint (author’s final draft

    Transformation techniques for OCL constraints

    Get PDF
    Constraints play a key role in the definition of conceptual schemas. In the UML, constraints are usually specified by means of invariants written in the OCL. However, due to the high expressiveness of the OCL, the designer has different syntactic alternatives to express each constraint. The techniques presented in this paper assist the designer during the definition of the constraints by means of generating equivalent alternatives for the initially defined ones. Moreover, in the context of the MDA, transformations between these different alternatives are required as part of the PIM-to-PIM, PIM-to-PSM or PIM-to-code transformations of the original conceptual schema.Postprint (published version

    Non-functional requirements in software architecture practice

    Get PDF
    Dealing with non-functional requirements (NFRs) has posed a challenge onto software engineers for many years. Over the years, many methods and techniques have been proposed to improve their elicitation, documentation, and validation. Knowing more about the state of the practice on these topics may benefit both practitioners’ and researchers’ daily work. A few empirical studies have been conducted in the past, but none under the perspective of software architects, in spite of the great influence that NFRs have on daily architects’ practices. This paper presents some of the findings of an empirical study based on 13 interviews with software architects. It addresses questions such as: who decides the NFRs, what types of NFRs matter to architects, how are NFRs documented, and how are NFRs validated. The results are contextualized with existing previous work.Preprin

    Bridging the gap among academics and practitioners in non-functional requirements management: some reflections and proposals for the future

    Get PDF
    The software engineering community has paid a lot of attention to the study of non-functional requirements (NFRs). Along time, framing NFRs into an articulated framework has become an elusive target. As a consequence, prac-titioners usually integrate NFRs in the different system life-cycle activities in an ad-hoc manner. In this work, we summarise the results of a recent empirical study involving 13 software architects from the Spanish. These results serve as the basis for discussion about possible ways to bridge the gap between academics and practitioners in the management of NFRs.Postprint (author’s final draft

    Alf-verifier: an Eclipse plugin for verifying Alf/UML executable models

    Get PDF
    In this demonstration we present an Eclipse plugin that implements a lightweight method for verifying fine-grained operations at design time. This tool suffices to check that the execution of the operations (specified in Alf Action Language) is consistent with the integrity constraints defined in the class diagram (specified in UML) and returns a meaningful feedback that helps correcting them otherwise.Postprint (author’s final draft

    Generating operation specifications from UML class diagrams: A model transformation approach

    Get PDF
    One of the more tedious and complex tasks during the specification of conceptual schemas (CSs) is modeling the operations that define the system behavior. This paper aims to simplify this task by providing a method that automatically generates a set of basic operations that complement the static aspects of the CS and suffice to perform all typical life-cycle create/update/delete changes on the population of the elements of the CS. Our method guarantees that the generated operations are executable, i.e. their executions produce a consistent state wrt the most typical structural constraints that can be defined in CSs (e.g. multiplicity constraints). In particular, our method takes as input a CS expressed as a Unified Modeling Language (UML) class diagram (optionally defined using a profile to enrich the specification of associations) and generates an extended version of the CS that includes all necessary operations to start operating the system. If desired, these basic operations can be later used as building blocks for creating more complex ones. We show the formalization and implementation of our method by means of model-to-model transformations. Our approach is particularly relevant in the context of Model Driven Development approaches. © 2011 Elsevier B.V. All rights reserved.The authors want to thank the anonymous referees of this journal for their interesting suggestions. This work has been partly supported by the MICINN under projects TIN2008-00444, Grupo Consolidado and TIN2010-18011, and by the Generalitat Valenciana under the project OKA PROMETEO/2009/015, and co-financed with the European Regional Development Fund.Albert Albiol, M.; Cabot Sagrera, J.; Gómez Seoane, C.; Pelechano Ferragud, V. (2011). Generating operation specifications from UML class diagrams: A model transformation approach. Data and Knowledge Engineering. 70(4):365-389. https://doi.org/10.1016/j.datak.2011.01.003S36538970
    corecore